
lapart Documentation
Release 0.0.1

C. Birk Jones

Mar 03, 2018

Overview:

1 Architecture 3

2 Installation 7

3 Example: XOR 9

4 Example: Solar PV 11

5 Adaptive Resonance Theory 15

6 Training Algorithm 17

7 Testing Algorithm 19

8 Copyright and license 21

9 Indices and tables 23

Python Module Index 25

i

ii

lapart Documentation, Release 0.0.1

The Laterally Primed Adaptive Resonance Theory (LAPART) neural networks couple two Fuzzy ART algorithms to
create a mechanism for making predictions based on learned associations. The coupling of the two Fuzzy ARTs has
a unique stability that allows the system to converge rapidly towards a clear solution. Additionally, it can perform
logical inference and supervised learning similar to fuzzy ARTMAP.

Figure 1: LAPART training (shown on the left side) uses two Fuzzy ART (A&B) algorithms connected by an associator
matrix (L). During training inputs xi are applied to the A-Side while yi inputs are presented ot the B side. The algorithm
then produces templates and an L matrix. The testing processes (shown on the right side) has the same structure as
the training but applies previously unseen testing data (xi) to the A-Side. The algorithm then produces outputs on the
B-Side that are the prediction results.

Overview: 1

lapart Documentation, Release 0.0.1

2 Overview:

CHAPTER 1

Architecture

The general layout of the LAPART algorithm includes two fuzzy ARTs, labeled as A and B, that are connected by an
associator matrix referred to as L. Each of them have an input layer, a recognition layer, and a categorization layer.
Also, they both have a vigilance parameter rhoA, rhoB respectively. The A and B algorithms are connected together
by an inference mechanism so that the template connections are established during training and then used to provide
predictions during testing. The flow of the algorithm is shown in the Figure below. During training, the system is
able to learn through the presentation of input pattern pairs (IA{x1..xn} and IB{y1..yn}) applied to each Fuzzy ART
network. At the same time, interconnections between classes are formed in the L matrix. The interconnections between
the A and B Fuzzy ART connect the learned categories and allow for predictions to be made in the testing phase when
new data becomes available. During testing previously unseen data are presented to the A side only. Categorization
of the input patterns occurs in the A side which connects, through the L matrix, to a particular category on the B side.
The particular B side category for the input pattern is then the prediction for the given A input.

1.1 Fuzzy ART A

The training process is initiated with the presentation of an input pattern into the Fuzzy ART A algorithm. Since no
templates exist at the onset of the training the initial input becomes the first template on the A-side. Therefore, a
new template or class would be created using the “New A Class” block shown in the figure above. In this situation,
the Fuzzy ART B operates as a normal ART algorithm. Since there are no B-Side templates, a new template was
automatically created and a link between the A and B Fuzzy ARTs are established in the L matrix.

The algorithm then starts over with a new input, and repeats until all of the inputs are considered. When the new input
is presented to all of the existing templates, in the “A-Side Search” block, it searched for the top matches as determined
by the choice function. Then the vigilance test is computed in the “A-Side Resonance” block to determine if resonance
with an existing template occurs or not. If resonance does not occur then the next best template was considered until
no choices were left. If a match is not found, then the script for Case 1 is implemented. If a match does occur, the
script for Case 2 is used.

3

lapart Documentation, Release 0.0.1

Figure 1.1: LAPART training algorithm flow diagram includes Fuzzy ART A & B and two cases for learning A and B
side templates.

4 Chapter 1. Architecture

lapart Documentation, Release 0.0.1

1.2 Case 1

The Case 1 code scenario occurs when a new A-side class was created and the Fuzzy ART B is allowed to operate as
a normal ART algorithm. First, a new A-Side template is created. Then the B-Side input pattern is presented to the
“B-Side Search” block where the choice function is used to discover the best template match. After the best match is
found, the system tested the match to see if it met the vigilance parameter criteria in the “B-Side Resonance” block.
If it did not, then a new template is created. If it did, then it updates an existing template. After the creation or update
of a B-Side template, the inference matrix L was updated to link the newly created A-Side template to the B-Side
template.

1.3 Case 2

In the event that resonance occurred in the Fuzzy ART A section of the code then Case 2 is implemented. First, the
A-side template that resonated with the input pattern is not updated, but instead put on hold until further notice. Also,
the match function is used to find the template that best matched the given input pattern. Then, if the chosen template
passed the vigilance criteria, where the match function was greater than or equal to the B-side vigilance (rhoB), then
the given A and B side templates are updated respectively. But, if it does not pass, then the system experiences a lateral
reset and the initial A-side template is hidden and the process is repeated.

1.2. Case 1 5

lapart Documentation, Release 0.0.1

6 Chapter 1. Architecture

CHAPTER 2

Installation

lapart-python requires Python (2.7, 3.4, or 3.5) along with several Python package dependencies. Information on
installing and using Python can be found at https://www.python.org/. Python distributions, such as Anaconda, are
recommended to manage the Python interface.

lapart-python can be installed using pip, git, or a downloaded zip file. Note that the pip installation will NOT include
the examples folder referenced in this manual.

pip: To install lapart-python using pip:

pip install lapart-python

Required Python package dependencies include:

• Pandas [Mcki13]: used to analyze and store time series data, http://pandas.pydata.org/

• Numpy [VaCV11]: used to support large, multi-dimensional arrays and matrices, http://www.numpy.org/

7

https://www.python.org/
http://pandas.pydata.org/
http://www.numpy.org/

lapart Documentation, Release 0.0.1

8 Chapter 2. Installation

CHAPTER 3

Example: XOR

The exclusive or (XOR) is a logical operation that outputs true when inputs differ.

import numpy as np
import pandas as pd
from lapart import train,test

xtrain = pd.read_csv('xor_train.csv').as_matrix()
xAtest = pd.read_csv('xor_test.csv').as_matrix()
xAtrain,xBtrain = xtrain[:,0:2],xtrain[:,2:3]

xAtrain

array([[0. , 0.],
[1. , 0.],
[0. , 1.],
[1. , 1.],
[1. , 1.],
[0.9, 0.9],
[0.1, 0.8],
[0.2, 0.2],
[1. , 1.]])

xBtrain

array([[0.],
[1.],
[1.],
[0.],
[0.],
[0.1],
[0.8],
[0.],
[0.]])

9

lapart Documentation, Release 0.0.1

xAtest

array([[0.1 , 0.9],
[1. , 0.],
[0. , 0.],
[1. , 1.],
[0. , 1.],
[0.15, 0.1]])

rA,rB = 0.8,0.8

TA,TB,L,t = train.lapArt_train(xAtrain,xBtrain,rhoA=rA,rhoB=rB,memory_folder=
→˓'templates',update_templates=False)

C,T,Tn,df,t = test.lapArt_test(xAtest,rhoA=rA,rhoB=rB,memory_folder='templates')

C

array([[1.],
[1.],
[0.],
[0.],
[1.],
[0.]])

10 Chapter 3. Example: XOR

CHAPTER 4

Example: Solar PV

The LAPART algorithm has been used in solar photovoltaic (PV) applications: (http://ieeexplore.ieee.org/document/
7355834/).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

from lapart import train,test

df = pd.read_csv('pv_train.csv')
df = df.set_index('datetime')
df.index = pd.to_datetime(df.index)
df = df[df['POAIrrad1_Avg'] > 0]

strain,etrain = '2017-03-01 00:00:00','2017-03-28 23:59:00'
stest,etest = '2017-03-29 07:00:00','2017-03-31 18:59:00'
dftrain = df[(df.index >= strain) & (df.index <= etrain)]
dftest = df[(df.index >= stest) & (df.index <= etest)]

dftrain = df.sample(frac=0.5)

xAtrain = np.array([dftrain['POAIrrad1_Avg'].tolist()]).T # Plane of Array Irradiance
xBtrain = np.array([dftrain['Sys1Wdc_Avg'].tolist()]).T # System 1 DC Power
xAtest = np.array([dftest['POAIrrad1_Avg'].tolist()]).T # Plane of Array Irradiance

rA,rB = 0.97,0.98

TA,TB,L,time_train = train.lapArt_train(xAtrain,xBtrain,rhoA=rA,rhoB=rB,memory_folder=
→˓'templates',update_templates=False)

11

http://ieeexplore.ieee.org/document/7355834/
http://ieeexplore.ieee.org/document/7355834/

lapart Documentation, Release 0.0.1

C,T,Tn,df,time_test = test.lapArt_test(xAtest,rhoA=rA,rhoB=rB,memory_folder='templates
→˓')

dfn = pd.DataFrame(Tn,columns=['low', 'high'])

dftest['low'] = Tn[:,0].tolist()
dftest['high'] = Tn[:,1].tolist()

fig, (ax1) = plt.subplots(1,1,figsize=(20, 10))
ax1.plot(dftest['low'],color='grey')
ax1.plot(dftest['high'],color='grey')
ax1.fill_between(dftest.index, dftest['low'], dftest['high'], alpha=0.5,color='grey')
ax1.plot(dftest.index,dftest['Sys1Wdc_Avg'],color='red')
ax1.set_xlabel('Time',fontsize=20)
ax1.set_ylabel('Power (Watts)',fontsize=20)
ax1.tick_params(axis = 'both', which = 'major', labelsize = 18)

ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
ax1.grid()

plt.show()

fig, (ax1,ax2) = plt.subplots(1,2,figsize=(20, 10),sharey=True)
ax1.scatter(dftest['POAIrrad1_Avg'],dftest['Sys1Wdc_Avg'])
ax1.set_xlabel('Irradiance (W/m2)',fontsize=15)
ax1.set_ylabel('Power (Watts)',fontsize=15)
ax1.tick_params(axis = 'both', which = 'major', labelsize = 18)
ax1.grid()

ax2.scatter(dftest['Sys1Wdc_Avg'],dftest['high'],color='r')
ax2.scatter(dftest['Sys1Wdc_Avg'],dftest['low'],color='b')
ax2.set_xlabel('Actual Power (Watts)',fontsize=18)
ax2.set_ylabel('Estimated Power (Watts)',fontsize=18)
ax2.tick_params(axis = 'both', which = 'major', labelsize = 18)

(continues on next page)

12 Chapter 4. Example: Solar PV

lapart Documentation, Release 0.0.1

(continued from previous page)

ax2.grid()

plt.show()

13

lapart Documentation, Release 0.0.1

14 Chapter 4. Example: Solar PV

CHAPTER 5

Adaptive Resonance Theory

Fuzzy ART is a ANN architecture that can learn without forgetting. It is similar to human memory where people can
recognize their parents even if they have not seen them in a while and have learned many new faces since. The theory
was developed by Grossberg and Carpenter and includes various types such as ART 1, ART 2, ART 3, and Fuzzy
ART. ART 1 is an architecture that can be used for clustering of binary inputs only. ART 2 improved upon the ART 1
architecture to support continuous inputs. Fuzzy ART, used in the present work, incorporates fuzzy set theory into the
pattern recognition process.

The stand alone ART algorithm is available in Python at https://github.com/cbirkj/art-python.

art.match_choice(c, norm, normI, normT, m, chm, rho, beta)
Checks match criterion Compute choice equation Discovers best choice

Parameters

• norm – minimum of input and templates

• normI – norm of input

Returns returns category choice location

art.template_options_loop(cmax, chmax, ch, nc, m, chm, rho)
Match Criterion

Parameters

• cmax – Maximum choice (initialized to be -1)

• chmax – Match Criterion (initialized to be -1)

• ch – Template choice

• nc – Number of Categories

Return cmax Maximum choice template location

art.ART(I, T, m, chm, nc, min_calc, rho, beta, j)
Train ART - Create Template Matrix

Parameters

15

https://github.com/cbirkj/art-python

lapart Documentation, Release 0.0.1

• I – Input

• T – Template

• cmax – Maximum choice (initialized to be -1)

• chmax – Match Criterion (initialized to be -1)

16 Chapter 5. Adaptive Resonance Theory

CHAPTER 6

Training Algorithm

The training code evaluates each input using :func:’lapart.train.lapart_train’

The supervised training algorithm used known inputs and outputs, and free parameters to create templates TA, TB,
and L.

train.lapArt_train(xA, xB, rhoA=0.9, rhoB=0.9, beta=1e-06, alpha=1.0, nep=1, memory_folder=”,
update_templates=True, normalize_data=True)

Train LAPART Algorithm

Parameters

• xA – A-Side Input Matrix (float)

• xB – B-Side Input Matrix (float)

• rhoA – A-Side free parameter (float)

• rhoB – B-Side free parameter (float)

• beta – Learning rate free parameter (float)

• alpha – Choice Parameter (float)

• nep – Number of epochs (integer)

• memory_folder – Folder to store memory (string)

• update_templates – Command to update or create new templates (boolean)

Return TA A-Side template matrix (float)

Return TB B-Side template matrix (float)

Return L Associator matrix (float)

Return elapsed_time Seconds to complete training (float)

17

lapart Documentation, Release 0.0.1

18 Chapter 6. Training Algorithm

CHAPTER 7

Testing Algorithm

The testing algorithm uses the stored memory (TA, TB, and L) to make predictions.

19

lapart Documentation, Release 0.0.1

20 Chapter 7. Testing Algorithm

CHAPTER 8

Copyright and license

lapart-python is copyright through Sandia National Laboratories. The software is distributed under the Revised BSD
License. Pecos also leverages a variety of third-party software packages, which have separate licensing policies.

8.1 Copyright

Copyright 2017 Sandia Corporation.
Under the terms of Contract DE-NA0003525 with Sandia Corporation,
the U.S. Government retains certain rights in this software.

8.2 Revised BSD license

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of Sandia National Laboratories, nor the names of
its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

(continues on next page)

21

lapart Documentation, Release 0.0.1

(continued from previous page)

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22 Chapter 8. Copyright and license

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

23

lapart Documentation, Release 0.0.1

24 Chapter 9. Indices and tables

Python Module Index

a
art, 15

t
test, 19
train, 17

25

lapart Documentation, Release 0.0.1

26 Python Module Index

Index

A
art (module), 15
ART() (in module art), 15

L
lapArt_train() (in module train), 17

M
match_choice() (in module art), 15

T
template_options_loop() (in module art), 15
test (module), 19
train (module), 17

27

	Architecture
	Installation
	Example: XOR
	Example: Solar PV
	Adaptive Resonance Theory
	Training Algorithm
	Testing Algorithm
	Copyright and license
	Indices and tables
	Python Module Index

